Tissues of MSH2-deficient mice demonstrate hypermutability on exposure to a DNA methylating agent.

نویسندگان

  • S E Andrew
  • M McKinnon
  • B S Cheng
  • A Francis
  • J Penney
  • A H Reitmair
  • T W Mak
  • F R Jirik
چکیده

The mutational response of mismatch repair-deficient animals to the alkylating agent N-methyl-N-nitrosourea was evaluated by using a transgenic lacI reporter system. Although the mutations detected in MSH2 heterozygotes were similar to those of controls, MSH2-/- animals demonstrated striking increases in mutation frequency in response to this agent. G:C to A:T transitions at GpG sites, as opposed to CpG sites, dominated the mutational spectrum of both MSH2+/+ and MSH2-/- N-methyl-N-nitrosourea -treated animals. Extrapolating to humans with hereditary non-polyposis colorectal cancer, the results suggest that MSH2 heterozygotes are unlikely to be at increased risk of mutation, even when exposed to potent DNA methylating agents. In contrast, mismatch repair-deficient cells spontaneously arising within individuals with hereditary non-polyposis colorectal cancer would likely exhibit hypermutability in response to such mutagens, an outcome predicted to accelerate the pace of tumorigenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repopulating defect of mismatch repair-deficient hematopoietic stem cells.

Mismatch repair deficiency is associated with carcinogenesis, increased spontaneous and induced mutagenesis, and resistance to methylating agents. In humans, leukemias and lymphomas arise in the background of mismatch repair deficiency, raising the possibility that hematopoiesis is abnormal as well. To address hematopoiesis in MSH2-/- mice, we collected marrow and performed serial transplantati...

متن کامل

DNA mismatch repair deficiency stimulates N-ethyl-N-nitrosourea-induced mutagenesis and lymphomagenesis.

The primary role of the mismatch repair (MMR) system is the avoidance of mutations caused by replication and recombination errors. Furthermore, the lethality of methylating agents has been attributed to the processing of O(6)-methylguanine lesions in DNA by MMR. Loss of the MSH2 protein completely abolishes repair function and results in reduced cell killing by methylating agents and accelerate...

متن کامل

Msh2 status modulates both apoptosis and mutation frequency in the murine small intestine.

Deficiency in genes involved in DNA mismatch repair increases susceptibility to cancer, particularly of the colorectal epithelium. Using Msh2 null mice, we demonstrate that this genetic defect renders normal intestinal epithelial cells susceptible to mutation in vivo at the Dlb-1 locus. Compared with wild-type mice, Msh2-deficient animals had higher basal levels of mutation and were more sensit...

متن کامل

Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer

To investigate the role of the presumed DNA mismatch repair (MMR) gene Msh2 in genome stability and tumorigenesis, we have generated cells and mice that are deficient for the gene. Msh2-deficient cells have lost mismatch binding and have acquired microsatellite instability, a mutator phenotype, and tolerance to methylating agents. Moreover, in these cells, homologous recombination has lost depe...

متن کامل

Repair deficient mice reveal mABH2 as the primary oxidative demethylase for repairing 1meA and 3meC lesions in DNA.

Two human homologs of the Escherichia coli AlkB protein, denoted hABH2 and hABH3, were recently shown to directly reverse 1-methyladenine (1meA) and 3-methylcytosine (3meC) damages in DNA. We demonstrate that mice lacking functional mABH2 or mABH3 genes, or both, are viable and without overt phenotypes. Neither were histopathological changes observed in the gene-targeted mice. However, in the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 3  شماره 

صفحات  -

تاریخ انتشار 1998